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Abstract. The zero sets of Kd\t-functions are characterized in terms of the stratification of
the infinite Grassmannian. It is shown that these sets are related to integrable hierarchies arising
from Schbdinger equations with energy-dependent potentials.

1. Introduction

The analysis of--functions in the framework of the infinite-dimensional Grassmannian Gr
[1-3] has been relevant not only in the development of the theory of nonlinear integrable
systems of Korteweg—de Vries (KdV) type but also in providing a bridge between these
systems and important applications of quantum field theory to algebraic geometry, quantum
gravity and string theory [4]. Integrable systems such as those of the Kadomtsev—
Petviashvili (KP), KdV or Gelfand-Dikii hierarchies are described by flows in the so-called
big cell of Gr. For example, in the case of &r the part of Gr which is relevant for the
KdV hierarchy, every elemeri € Gr® determines a flowV (t) in Gr® and a solution of

the hierarchy of the form

uw (t) = =202 In Ty (t) t:= (1315 ...)

where Ty (t) is the r-function associated tdV. This solution is defined only for those
such thatry (t) # 0, or equivalently, providedV (¢) is in the big cell of Gr.

Despite the fact that the big cell is a dense open set of Gr, there are other sectors in
Gr® which deserve attention. Thus, @radmits a partition into strata

Gr? = U S
m=0

and only the stratunXy is in the big cell. In a recent work by Adler and van Moerbeke [5]
it was shown that the strata different from the big cell of the general Grassmannian Gr are
essential for describing the blow-up behaviours of the Baker functions of the KP hierarchy.
Similar considerations for th&/-periodic Toda flows can be found in [6].

The present paper shows that the strata m > 1 of Gr?, support the flows of the
integrable hierarchies associated to $dimger equations with energy-dependent potentials

2m
32f = (WH + an(x)>f A= k2
n=0

These hierarchies were introduced in [7,8] and further generalized and studied in ([9-
12]). In what follows they will be referred to as the hiddém + 1)th KdV hierarchies
(hKdV 2,,+1)) since their flows take place outside the big cell.
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The majority of our analysis is concerned with the close link it establishes between the
hKdV hierarchies and the zero sets of KdVfunctions in the infinite-dimensional space
C® ={t = (n,13,15,...),1; € C}. Thus, it is proved that, as a function af, Ty (¢)
can have zeros of ordeis, := m(m + 1)/2 (m > 1) only, and that the set of,,-order
zeros ofry is characterized by some associated solutions of the fygdy hierarchy. As
a consequence, a method is provided for characterizing solutions of the hKdV hierarchies
from t-functions of the standard KdV hierarchy.

2. Zeros of r-functions and the stratification of the Grassmannian

Let H be the Hilbert space of all square-integrable functions on the unit cifclef the
complex plane. It can be decomposed as the direct 8umx H, @ H_ of the closed
subspacesH, and H_ spanned by the basis elemerid'} with n > 0 andn < O,
respectively. We will consider the Grassmannian, Gr, of all subspéce$ H such that:

(i) the orthogonal projection®,. : W — H. are operators of Fredholm and compact
types, respectively;

(ii) the virtual dimension ofW (i.e. the index ofP.) is zero.

It can be proved that Gr constitutes a connected Banach manifold which exhibits a
stratified structure [13, 1]. To describe this structure let us introduce thgysdtincreasing
sequences of integers

S = {s0, 51, 52, ...}
such thats, = n for all sufficiently largen. We may associate to ead#i € Gr the set of
integers

Sw ={n €Z:3w e W of ordern}.

(An elementw € H is said to be of finite order if it can be expressed in the form
w = Zm@ a, k™, with a, # 0.) As a consequence of the fact that the virtual dimension of
W is zero, it follows thatSy, € Sy. Thus, givenS € Sy we may define the subset of Gr

Ys={WeGr:Sy=3S5}

which is called the stratum associated with In any W € Gr the elements of finite order
form a dense open subspace denotedW3{f. Therefore,W belongs toXs when W9 has
a basis{w, : n > 0} with w, of orders,.

The stratumXg is a submanifold of Gr of finite codimension given by

£(S) = codim=g = Z(n — 5n).
n=0

In particular, if S is the set of non-negative integers the corresponding stratum has
codimension zero and constitutes a dense open subset of Gr which istballeid cell

In the analysis of the KdV hierarchy one is lead to consider the subset of Gr given by

Gr? = (W e Gr: k*W c W).
Here k? denotes the action of the multiplication operator by the functitinlt is obvious

that Sy + 2 C Sy for all W € Gr?, and as a consequence the stratification df'Guarns
out to be

Gr? = U pom T, = Xg, NGr? (1)

m=>0
where
Sp={-m,—-m+2,—-m+4,... mm+1m+2 ..} 2)
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Let us now consider the group, of holomorphic maps
gDy — C* Do={keC:lk| <1}

This group acts by multiplication operators on@rso that givenw e Gr® then for
appropriatet := (t4, t3, 15, . . .) € C* we may define

W) = {folk, ) 'w :w e W} ©))
where
folk.t) = exp( thn+1k2"“>. )
n=0

As is proved in [1]W(t) belongs to the big celk, for almost all . This is so because
there exists a non-zero holomorphic functiop(t) associated wittW such that the Baker
function defined by

t—elk
Fkt) = folk, t)%(f)(” (5)

with

© 1 1 1
ek=-, —,..., —— ...
K’ 3k3 (2n + k21

belongs toW for all ¢ such thatry (t) # 0. In this way, and taking into account that the
derivatives off with respect to the variables are also members ¥, it is trivial to prove
that providedry (t) # 0 the subspac® (t) contains elements, of ordern for all n > O:

w,(k, t) == folk, t)~10" f(k, t) xi=1.
Therefore,W (t) € £y and, as a consequence, there exist decompositions of the form

2f =(tuw®)f A=k

dni1f = a(k®, 1) f +b(k?, £)d, f
where

d
0t2,41

anda andb are polynomials irk?. By imposing the compatibility between these equations
one obtains the standard KdV hierarchy of evolution equations for the function

ww (t) = =202 In Ty (t).

Now we consider one of the main points of our discussion: the analysis of the zero set
of Ty (¢), or equivalently, the set of singularities of the Baker functif(k, t) and the
corresponding solutiony (t) of the KdV hierarchy. A detailed study of the zero sets of the
r-functions for the general Grassmannian Gr has been provided in [5], where a method is
given for desingularizing the Baker functions by means &€lBund transformations. In our
present study we only require some specific properties ofcthenctions for the reduced
Grassmannian &, which are included in the next theorem and its corollary. More general
estimates for the behaviour of thefunctions near the zeros are given in theorem 7.3 of

[5].
Theorem 1llet tg = (o1, tos, fos, - ..) be a zero ofty (t). Then there exists an integer
m > 0 such that the functiomy (11, 103, fos, . . .) has a zero of order
m(m + 1)
2

n>0

O2ny1 =

YOS

att, = to1.



4818 M Mafias et al

Proof. SinceW e Gr® then it follows thatW (ty) € Gr®, so that according to equation (1)
and taking into account thaty (tg) = 0, we deduce thaW (to) is in one of the strat&,,
for somem > 0. Now, from proposition 8.6 of [1] we have that for amye Gr

t(t1,0,0,...) = ctf + Ot ™)

wherec # 0 and/ is the codimension of the stratum of Gr containi¥ig Moreover, it is
easy to find that

codimXs, =: 4(X,,) =4
and therefore
Wit (x,0,0,...) = ex' + O(x" )

with ¢ # 0. Furthermore, according to the following propertyrefunctions—which derives
from equation (3.4) of [1]

vt +t) =Ty ()
we have
Tw (to1 + X, t03, t05, - - ) = Twtg) (X, 0,0, ..0).
Hence the statement of the theorem immediately follows. O

As a consequence of this result we see that the minimal dygdésr which a derivative
of the formaf" T (to) does not vanish characterizes the straffyncontainingW (¢g). Thus,
we may state the following.

Corollary 1. The following statements are equivalent:
(1) W(tp) is in the stratumx,,.
(2) The r-function of W satisfies

M1y (o) =0 0<n <4, 9" Ty (to) # O. (6)
(3) The z-function of W satisfies
A" Ty (to) = 0 0<n<m A Ty (to) # O. (7)

3. Zeros of r-functions and hKdV hierarchies

We are now in a position to analyse the relationship between the zero setfunttions
and the hKdV hierarchies. Let us suppose givéne Gr® and let us denote by the
zero set of the correspondingfunction ty,. According to theorem 1 there is a partition of
Zyw of the form

zw =\ zy

m>=1

whereZﬁ'," stands for the set of zerdg = (o1, fo3, fos, - . .) Of Tw (t) such that the function

Ty (11, to3, fos, . . .) has a zero of ordef,, ats; = tp;. From corollary 1 we see thzﬁﬁ,’" can
be characterized as the set of solutierss C* of the system ofn equations

O Ty (t) =0 O<n<m (8)
satisfyingd;" oy (t) # O.
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The setZy is ananalytic setin C* [14], so that it can be considered as a union of
complex manifolds. Suppose we are able to finda#&ch in Zy described by a mapping
D ¢ C® — Z; of the following form

t = (tomt1s tamt3s tams 5, - - ) > () = (b1(om), - - D), tw)  (9)

where the function$; arem complex-valued functions depending &). This means that
t(t,) is required to satisfy equation (8) alafi" w (t(t,)) # O for all t,, € D. Notice that
the functionsh; can be found by solving (8) with respect to the fisstvariablest,; ;1.

We are going to see that patchis,,) are associated with solutions of the hKgy, 1,
hierarchy. From corollary 1 we have thét(t(t,)) € X, for all t,, € D, and therefore
there exists a unique function W (¢(t,,)) of order—m

A 1
f(k,tm)Z(l—i—al(ktm) N anlgim) +>

kﬂl (10)

Theorem 2.The function

Fktn) = folk, t(Etn)) f (K, t) (11)
satisfies the Scbdinger equation with an energy-dependent potential

2m
02f = <k2’"“ +Y M, (tm))f Xi=loms1 A=Kk (12)

n=0
and a system of equations of the form
Qi f = alk®, t,) f +b(% t)oc f  n=m+1 (13)

wherea andb are polynomials ink?.
Proof. From expansion (10) we have that for al> 0 the functions
Kot f K fo to. f (14)

are elements oW (t(t,,)) of orders 2 —m and 21 +m + 1, respectively. Hence, due to the
fact thatW (t(t,,)) € ., it follows that the functions in (14) form a basis Bf(t(t,,))2.
Moreover, by denoting

b(tw) =Y kb, (tn)
n=1
and
g = 02f — (3:b+ K" H2f — (%% day) f
it is obvious thatg € W. Furthermore,
fo'lg=0w"Y (15)

SO thatfo‘lg belongs toW (¢(t,,)) and has an order not greater than- 1. Hence, there
exists a decomposition

m—1
fo_lg = Zkzncn(tm)fo_lf
n=0

and this implies an equation of the type (12).
In a similar way one proves that (11) satisfies equations of the form (13). O
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The compatibility conditions for (12) and (13) lead [10] to the hKdV hierarchies
associated with the Sabdinger spectral problem (12). For example, if we take= 1
andr = r5 the coefficients of the potential function satisfy the evolution equations

143 1
8,u0 = Zaxuz — uoaxuz — éugaxuo
oy = —%uzaxul — U10,Up + Oyl (16)
duz = — Judsup + dcuy

wheret = t5 andx = 13.

The above analysis provides a method for generating solutions to the hKdV hierarchies
from elementsW € Gr®. The starting point is the-function ry () corresponding tdv.
Suppose that for a given > 1 the system (8) can be solved with respectio. . ., r5,-1)
in terms ofm functions oft,, = (fau11, fome3, .. .)

tri_1 = b;(t,) i=1...,m.

Then, function (11) determines a wavefunction of the higdys, hierarchy on the domain
D of pointst,, such that

0" Tw (E(t)) # 0.

Solutions of the members of the hierarchy can be derived from the funcbioasd a,
arising in expansion (10). For examplesif= 1, we have

ug = 20,a3 — 2a0,a1 + alafb]_ + 20,a10,b1
uy = (8xb1)> + 20,41 (17)
uz = 23xb1.

Our next theorem shows how to determine the explicit form of (10) fromrthenction
of W.

Theorem 3If W(tp) is in the stratumX,, then the functionf(k, to) is given by
3, 1y (to — e (k)
8y" " P (D) Ty (t0)
where P, (9), 8 := (91, 93, ...), IS obtained from the identity
1
exp(—e(k) - 0) = — P,(9).
p(—e( g o

Proof. The proof of this result is based on the properties of the decompositian of
functions in terms of Schur functions [1]

Tv(t) =Y wiFs(t). (19)
S

fk, to) =

(18)

EachFs is a polynomial in the;, homogeneous of weighi(S) if we give r; weighti, with
£(S) given by the codimension of the stratufy. It turns out [1] that the minimal weight
of the terms in (19) is the codimension of the stratum on whiches. Hence, by taking
into account that

1 1 1 1 1 1
Tw t01—%+x,t03—@,t05—%,... = Tw(ty) x—%,—@,—%,...

from the assumptioV (tg) € =,, we deduce that

1
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Hence, the minimal ordefmin for which 9™ty (to — €(k)), as a function ofk, is not
identically zero and must satisfymin > ¢,,_1. OtherwiseW (o) would admit elements
of degreed < m and this would contradict the assumpti®in(tg) € *,. Let us see that
fmin = £m—1. First, we notice thatmi, is of the form¢,, for somep > 0. This follows from
theorem 1 which implies thatmi, is the minimum of the valueg, corresponding to the
strataX, such thatW(to — e(k)) € X, for some value ok. Moreover, asﬂf'”rw(to) #0
and P»(8) = 92/2 it easily follows that" *y (to — e(k)) % 0, SO thatim, is of the form
£, with p < m. Thereforenmin = £,,_1.
Finally, from (20) we deduce

c 1
afmilfW(tO —e(k)) = o +0 (k”"*l)

with ¢ # 0, since otherwiséV (to) would admit elements of degrek< m. The rest of the
proof immediately follows. O

Expression (18) forf (k, o) constitues a regularization of the Baker functions ofGr
near ther-function zeroes. A more general process of desingularizing the Baker functions
of the whole Gr is provided by theorem 7.4 of [5].

4. A class of solutions of hKdV hierarchies

In view of the results of the above section we have that the known classe&in€tions for

the standard KdV hierarchy are to our disposal in order to generate solutions to the hKdV
hierarchies. For example, we can take the class which characterizes the rational solutions
(see [1-3, 15, 16]), vanishing as—> oo. Theser-functions can be obtained by means of
coordinate translations from thefunctionst,, associated with the subspacdés, spanned

by {k* : s € S,,}. Moreover, we can write these latter in the form

hy, P R
hm72 hmfl cee h2m73
Tu@®) = |hm-4 hp_3z ... hous mz=1 (21)
hZ—m h3—m o hl

whereh; = h;(t) are the Schur polynomials:
exp( — Z t2,1+1k2”+1) =1+ Zh,-(t)ki.
n=0 izl
The first few of which are
1 =—I To = —%tf +13
ra— 1,6 1.3 2 (22)
3= zh 30113 + 115 — 13.
Let us describe some solutions of the hKg\ 1) hierarchies form = 1, 2 which derive

from theser-functions.
Let us first consider,. It can be factorized as

2

) 2 .

T, = —%H(rl—e’ﬁ/%) ¢ = exp .
i=0

Thus, fortz # 0 we have three patche (t,) (i = 0, 1, 2) with associated functions

bY) = Ei J 31‘3.
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Each of them determines a wavefunction of the higlWierarchy. For example, far= 0
we obtain

1 11
= k/3x + k3 k) (Do o —
f exp( X + x+;121+1 KR X =13
and the following solution of the hKdy, hierarchy
4 3 2

oz T @y’ T @

The analysis of the solutions of the hKdV hierarchies providedsdg more involved. The
discriminant ofrz with respect ta; is

Uupg =

A(ty) =[(3ts)° — (5t5)°]%
Hence, if A(t;) # 0 the polynomialrs(r1, t1), as a function ofr;, has simple roots only,

so that we may define six patch&8(¢;) which lead to solutions of the hKdy hierarchy.

The corresponding functiong = bf)(tl) satisfy the constraint
t2+tft n fts =0 (23)
T 3% 45 TP

which can be explicitly solved for the variahle:= 73 as

3 18
x=—24+ /14 I11s.
6 20

Thus, one finds two real continuous branches- bi“)(x, t5) (a = 1, 2). Observe that the
branch over the pointx, 1) = (‘5“"—3)3/5, (5t5)1/%), has a singulax-derivative at that point.
Notice also thab®@ (x, t5) = —b® (—x, —15).

Let us consider now the cage(t;) = O; that is to say,

3= %,(515)3/5

b] bl

\

Figure 1. Implicit branches of equation (23) fag =  Figure 2. Implicit branches of equation (23) fey = 2.
-2.
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for a certain determination of the cubic root. Under this condition one finds

2
3= g5(t1 — 515)*) [ [ (11 — @i (515)"%)
i=0

wherea; stand for the three different roots of + 3a? + 6a + 5. Thus, we obtain a patch
t(ty) determined by
b1 = (5x)Y° by = 3(5x)%° Xi=1s

which leads to a solution of the hKdy/ hierarchy. Observe thag(t(t) — e(k)) = 0,
and that the corresponding wavefunction is

flk, te) = exp(k(Sx)1/5 + k3%(5x)3/5 + k5x + - ) ( ! W) .

k2 k3
The t-functions of the KdV hierarchy of polynomial-type are relevant in the analysis
of the motion of poles for the rational solutions of the KdV equation [16]
03U = 81314 — Budqu.

Supposey (11, t1) is one of these functions. From the results of [1] and [16] one may prove
that for most values of; there exists a positive integer such thatry, can be factorized
into ¢,, different simple factors as

[
Tw(t1, t1) = [ [t — pito))
i=1

so that the corresponding solution of the KdV hierarchy takes the form

£, 2
w1, 8) = ) s

i=1
It turns out that after substituting this expression into the KdV equation one finds [16]
1 1
Op; =12 ——— =
; (pi — pj)? ; (pi — pj)?

and this constitutes a constrained flow of the Calogero—Moser hierarchy. Similar equations
are obtained by using the higher members of the KdV hierarchy. On the other hand,
according to the results of the present paper, each of the functigitg) determines a
solution of the hKd\ hierarchy associated with the patch

t9 (1) = (pi(to), to).
Thus, from (3) the corresponding wavefunction is
Tw (89 (t1) — e(k))
d1tw (2 (t1))
For these solutions it readily follows that the equations of the hidKierarchy reduce
to partial differential equations for thé, functions p;(t;). They describe differential

constraints for théaypersurfaces; = p; (t1) in C* involving several coordinates;, ;. For
example, it is not hard to see that from the third equation of (16) one finds

1
33[351% + (33pi)? + 03 Z } =0
A P P

FOU ) =~
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In what concerns the higher hKdV hierarchies, they arise when manifolds of multiple
zeros are present in the factorizationgf, so that they describe differential constraints for
the collisions of manifolds of simple zeros.

Finally, we notice that the solutions of the hKdV hierarchies determined in this section
involve in general implicit functions;(t,,). This type of solution also appears in the
theory of the Harry Dym equation [17-19] which in turn is also described in the context
of integrable hierarchies associated with generalized @sliinger problems. Therefore, it
may be expected that the analysis of this paper can be generalized to the integrable models
characterized in [11].

Acknowledgment

This work was patrtially supported by CICYT proyecto PB95-0401.

References

[1] Segal G and Wilson G 198Bubl. Math. IHES61 5
[2] Date E, Kashiwara M and Miwa T 1983 Transformation groups for soliton equahioméinear Integrable
Systems—Classical Theory and Quantum Theor Jimbo and T Miwa (Singapore: World Scientific)
[3] Jimbo M and Miwa T 1983ubl. RIMS Kyoto University9 943
[4] Witten E 1988Commun. Math. Phy4.13 529
Alvarez-Gaume L, Gomez C, Moore G and Vafa C 198&l. Phys.B 303455
Douglas M and Shenker M 1999ucl. Phys.B 335685
Gross D J and MigdbA A 1990 Phys. Rev. Lett64 717
Brezin E and Kazakov V 199Bhys. LettB 236 144
Kac V and Schwarz A 199Phys. LettB 257 329
Guil F and Md@as M 1993J. Phys. A: Math. Gern26 3569
[5] Adler M and van Moerbeke P 199dv. Math.108 140
[6] Adler M and van Moerbeke P 199@ath. Ann.296 1
[7] Jaulent M and Miodek | 197@&ett. Math. Phys1 243
[8] Martinez Alonso L 1980J. Math. Phys21 2342
[9] Antonowicz M and Forgt A P 1987Physica28D 345
[10] Antonowicz M and Ford A P 1989Commun. Math. Phy4.24 465
[11] Antonowicz M and Forgd A P 1988J. Phys. A: Math. Ger21 L269
[12] Fordy A P, Reyma A G and Semenov-Tian-Sharnsk A 1989 Lett. Math. Phys17 25
[13] Pressley A and Segal G 19&®&op Groups(Oxford: Oxford University Press)
[14] Chirka E M 1989Complex Analytic Setéordrecht: Kluwer)
[15] Kruskd M D 1974 Am. Math. Soc. (Lectures in Appl. Mati} 61
Thickstun W R 1976J. Math. Anal. Appl55 335
[16] Airault H, McKean H P and Moser J 197€ommun. Pure Appl. Matt80 95
[17] Wadati M, Ichikava Y H and Shimizu T 198®rog. Theor. Phys64 1959
[18] Hereman W, BanergeP P and ChattegeM R 1989J. Phys. A: Math. Ger22 249
[19] Konopelchenk B G 1995Physica81D 32



