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Zero sets ofτ -functions and hidden hierarchies of KdV
type
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Abstract. The zero sets of KdVτ -functions are characterized in terms of the stratification of
the infinite Grassmannian. It is shown that these sets are related to integrable hierarchies arising
from Schr̈odinger equations with energy-dependent potentials.

1. Introduction

The analysis ofτ -functions in the framework of the infinite-dimensional Grassmannian Gr
[1–3] has been relevant not only in the development of the theory of nonlinear integrable
systems of Korteweg–de Vries (KdV) type but also in providing a bridge between these
systems and important applications of quantum field theory to algebraic geometry, quantum
gravity and string theory [4]. Integrable systems such as those of the Kadomtsev–
Petviashvili (KP), KdV or Gelfand–Dikii hierarchies are described by flows in the so-called
big cell of Gr. For example, in the case of Gr(2), the part of Gr which is relevant for the
KdV hierarchy, every elementW ∈ Gr(2) determines a flowW(t) in Gr(2) and a solution of
the hierarchy of the form

uW(t) = −2∂2
1 ln τW (t) t := (t1, t3, t5, . . .)

whereτW (t) is the τ -function associated toW . This solution is defined only for thoset
such thatτW (t) 6= 0, or equivalently, providedW(t) is in the big cell of Gr.

Despite the fact that the big cell is a dense open set of Gr, there are other sectors in
Gr(2) which deserve attention. Thus, Gr(2) admits a partition into strata

Gr(2) =
⋃
m>0

6m

and only the stratum60 is in the big cell. In a recent work by Adler and van Moerbeke [5]
it was shown that the strata different from the big cell of the general Grassmannian Gr are
essential for describing the blow-up behaviours of the Baker functions of the KP hierarchy.
Similar considerations for theN -periodic Toda flows can be found in [6].

The present paper shows that the strata6m,m > 1 of Gr(2), support the flows of the
integrable hierarchies associated to Schrödinger equations with energy-dependent potentials

∂2
xf =

(
λ2m+1+

2m∑
n=0

λnun(x)

)
f λ := k2.

These hierarchies were introduced in [7, 8] and further generalized and studied in ([9–
12]). In what follows they will be referred to as the hidden(2m + 1)th KdV hierarchies
(hKdV(2m+1)) since their flows take place outside the big cell.
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The majority of our analysis is concerned with the close link it establishes between the
hKdV hierarchies and the zero sets of KdVτ -functions in the infinite-dimensional space
C∞ = {t = (t1, t3, t5, . . .), ti ∈ C}. Thus, it is proved that, as a function oft1, τW (t)
can have zeros of orders̀m := m(m + 1)/2 (m > 1) only, and that the set of̀m-order
zeros ofτW is characterized by some associated solutions of the hKdV(2m+1) hierarchy. As
a consequence, a method is provided for characterizing solutions of the hKdV hierarchies
from τ -functions of the standard KdV hierarchy.

2. Zeros ofτ -functions and the stratification of the Grassmannian

Let H be the Hilbert space of all square-integrable functions on the unit circleS1 of the
complex plane. It can be decomposed as the direct sumH = H+ ⊕ H− of the closed
subspacesH+ and H− spanned by the basis elements{kn} with n > 0 and n < 0,
respectively. We will consider the Grassmannian, Gr, of all subspacesW of H such that:

(i) the orthogonal projectionsP± : W −→ H± are operators of Fredholm and compact
types, respectively;

(ii) the virtual dimension ofW (i.e. the index ofP+) is zero.
It can be proved that Gr constitutes a connected Banach manifold which exhibits a

stratified structure [13, 1]. To describe this structure let us introduce the setS0 of increasing
sequences of integers

S = {s0, s1, s2, . . .}
such thatsn = n for all sufficiently largen. We may associate to eachW ∈ Gr the set of
integers

SW = {n ∈ Z : ∃w ∈ W of ordern}.
(An elementw ∈ H is said to be of finite ordern if it can be expressed in the form
w =∑m6n amk

m, with an 6= 0.) As a consequence of the fact that the virtual dimension of
W is zero, it follows thatSW ∈ S0. Thus, givenS ∈ S0 we may define the subset of Gr

6S = {W ∈ Gr : SW = S}
which is called the stratum associated withS. In anyW ∈ Gr the elements of finite order
form a dense open subspace denoted byW alg. Therefore,W belongs to6S whenW alg has
a basis{wn : n > 0} with wn of ordersn.

The stratum6S is a submanifold of Gr of finite codimension given by

`(S) := codim6S =
∑
n>0

(n− sn).

In particular, if S is the set of non-negative integers the corresponding stratum has
codimension zero and constitutes a dense open subset of Gr which is calledthe big cell.

In the analysis of the KdV hierarchy one is lead to consider the subset of Gr given by

Gr(2) = {W ∈ Gr : k2W ⊂ W }.
Herek2 denotes the action of the multiplication operator by the functionk2. It is obvious
that SW + 2 ⊂ SW for all W ∈ Gr(2), and as a consequence the stratification of Gr(2) turns
out to be

Gr(2) =
⋃
m>0

6m 6m := 6Sm ∩Gr(2) (1)

where

Sm = {−m,−m+ 2,−m+ 4, . . . , m,m+ 1, m+ 2, . . .}. (2)
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Let us now consider the group0+ of holomorphic maps

g : D0 −→ C× D0 = {k ∈ C : |k| 6 1}.
This group acts by multiplication operators on Gr(2), so that givenW ∈ Gr(2) then for
appropriatet := (t1, t3, t5, . . .) ∈ C∞ we may define

W(t) := {f0(k, t)
−1w : w ∈ W } (3)

where

f0(k, t) = exp

(∑
n>0

t2n+1k
2n+1

)
. (4)

As is proved in [1]W(t) belongs to the big cell60 for almost all t. This is so because
there exists a non-zero holomorphic functionτW (t) associated withW such that the Baker
function defined by

f (k, t) = f0(k, t)
τW (t− ε(k))

τW (t)
(5)

with

ε(k) =
(

1

k
,

1

3k3
, . . . ,

1

(2n+ 1)k2n+1
, . . .

)
belongs toW for all t such thatτW (t) 6= 0. In this way, and taking into account that the
derivatives off with respect to the variablestn are also members ofW , it is trivial to prove
that providedτW (t) 6= 0 the subspaceW(t) contains elementswn of ordern for all n > 0:

wn(k, t) := f0(k, t)
−1∂nx f (k, t) x := t1.

Therefore,W(t) ∈ 60 and, as a consequence, there exist decompositions of the form

∂2
xf = (λ+ uW(t))f λ := k2

∂2n+1f = a(k2, t)f + b(k2, t)∂xf

where

∂2n+1 := ∂

∂t2n+1
n > 0

anda andb are polynomials ink2. By imposing the compatibility between these equations
one obtains the standard KdV hierarchy of evolution equations for the function

uW(t) := −2∂2
1 ln τW (t).

Now we consider one of the main points of our discussion: the analysis of the zero set
of τW (t), or equivalently, the set of singularities of the Baker functionf (k, t) and the
corresponding solutionuW(t) of the KdV hierarchy. A detailed study of the zero sets of the
τ -functions for the general Grassmannian Gr has been provided in [5], where a method is
given for desingularizing the Baker functions by means of Bäcklund transformations. In our
present study we only require some specific properties of theτ -functions for the reduced
Grassmannian Gr(2), which are included in the next theorem and its corollary. More general
estimates for the behaviour of theτ -functions near the zeros are given in theorem 7.3 of
[5].

Theorem 1.Let t0 = (t01, t03, t05, . . .) be a zero ofτW (t). Then there exists an integer
m > 0 such that the functionτW (t1, t03, t05, . . .) has a zero of order

`m := m(m+ 1)

2
at t1 = t01.
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Proof. SinceW ∈ Gr(2) then it follows thatW(t0) ∈ Gr(2), so that according to equation (1)
and taking into account thatτW (t0) = 0, we deduce thatW(t0) is in one of the strata6m
for somem > 0. Now, from proposition 8.6 of [1] we have that for anyV ∈ Gr

τV (t1, 0, 0, . . .) = ct`1 +O(t`+1
1 )

wherec 6= 0 and` is the codimension of the stratum of Gr containingV . Moreover, it is
easy to find that

codim6Sm =: `(6m) = `m
and therefore

τW(t0)(x, 0, 0, . . .) = cx`m +O(x`m+1)

with c 6= 0. Furthermore, according to the following property ofτ -functions—which derives
from equation (3.4) of [1]

τV (t+ t′) = τV (t)(t′)
we have

τW (t01+ x, t03, t05, . . .) = τW(t0)(x, 0, 0, . . .).

Hence the statement of the theorem immediately follows. �

As a consequence of this result we see that the minimal order`m for which a derivative
of the form∂`n1 τW (t0) does not vanish characterizes the stratum6m containingW(t0). Thus,
we may state the following.

Corollary 1. The following statements are equivalent:
(1) W(t0) is in the stratum6m.
(2) Theτ -function ofW satisfies

∂n1τW (t0) = 0 06 n < `m ∂
`m
1 τW (t0) 6= 0. (6)

(3) Theτ -function ofW satisfies

∂
`n
1 τW (t0) = 0 06 n < m ∂

`m
1 τW (t0) 6= 0. (7)

3. Zeros ofτ -functions and hKdV hierarchies

We are now in a position to analyse the relationship between the zero sets ofτ -functions
and the hKdV hierarchies. Let us suppose givenW ∈ Gr(2) and let us denote byZW the
zero set of the correspondingτ -function τW . According to theorem 1 there is a partition of
ZW of the form

ZW =
⋃
m>1

Z
`m
W

whereZ`mW stands for the set of zerost0 = (t01, t03, t05, . . .) of τW (t) such that the function
τW (t1, t03, t05, . . .) has a zero of order̀m at t1 = t01. From corollary 1 we see thatZ`mW can
be characterized as the set of solutionst ∈ C∞ of the system ofm equations

∂
`n
1 τW (t) = 0 06 n < m (8)

satisfying∂`m1 τW (t) 6= 0.



Zero sets ofτ -functions 4819

The setZW is an analytic setin C∞ [14], so that it can be considered as a union of
complex manifolds. Suppose we are able to find apatch in ZW described by a mapping
D ⊂ C∞ −→ Z`mW of the following form

tm := (t2m+1, t2m+3, t2m+5, . . .) 7−→ t(tm) := (b1(t(m)), . . . , bm(tm), tm) (9)

where the functionsbi arem complex-valued functions depending ontm. This means that
t(tm) is required to satisfy equation (8) and∂`m1 τW (t(tm)) 6= 0 for all tm ∈ D. Notice that
the functionsbi can be found by solving (8) with respect to the firstm variablest2i+1.

We are going to see that patchest(tm) are associated with solutions of the hKdV(2m+1)

hierarchy. From corollary 1 we have thatW(t(tm)) ∈ 6m for all tm ∈ D, and therefore
there exists a unique function inW(t(tm)) of order−m

f̂ (k, tm) = 1

km

(
1+ a1(tm)

k
+ · · · + an(tm)

kn
+ · · ·

)
. (10)

Theorem 2.The function

f (k, tm) = f0(k, t(tm))f̂ (k, tm) (11)

satisfies the Schrödinger equation with an energy-dependent potential

∂2
xf =

(
λ2m+1+

2m∑
n=0

λnun(tm)

)
f x := t2m+1 λ := k2 (12)

and a system of equations of the form

∂2n+1f = a(k2, tm)f + b(k2, tm)∂xf n > m+ 1 (13)

wherea andb are polynomials ink2.

Proof. From expansion (10) we have that for alln > 0 the functions

k2nf −1
0 f k2nf −1

0 ∂xf (14)

are elements ofW(t(tm)) of orders 2n−m and 2n+m+1, respectively. Hence, due to the
fact thatW(t(tm)) ∈ 6m, it follows that the functions in (14) form a basis ofW(t(tm))alg.

Moreover, by denoting

b(tm) :=
m∑
n=1

k2n−1bn(tm)

and

g := ∂2
xf − (∂xb + k2m+1)2f − (2k2m∂xa1)f

it is obvious thatg ∈ W . Furthermore,

f −1
0 g = O(km−1) (15)

so thatf −1
0 g belongs toW(t(tm)) and has an order not greater thanm − 1. Hence, there

exists a decomposition

f −1
0 g =

m−1∑
n=0

k2ncn(tm)f
−1
0 f

and this implies an equation of the type (12).
In a similar way one proves that (11) satisfies equations of the form (13). �
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The compatibility conditions for (12) and (13) lead [10] to the hKdV hierarchies
associated with the Schrödinger spectral problem (12). For example, if we takem = 1
and t = t5 the coefficients of the potential function satisfy the evolution equations

∂tu0 = 1
4∂

3
xu2− u0∂xu2− 1

2u2∂xu0

∂tu1 = − 1
2u2∂xu1− u1∂xu2+ ∂xu0

∂tu2 = − 3
2u2∂xu2+ ∂xu1

(16)

wheret := t5 andx := t3.
The above analysis provides a method for generating solutions to the hKdV hierarchies

from elementsW ∈ Gr(2). The starting point is theτ -function τW (t) corresponding toW .
Suppose that for a givenm > 1 the system (8) can be solved with respect to(t1, . . . , t2m−1)

in terms ofm functions oftm = (t2m+1, t2m+3, . . .)

t2i−1 = bi(tm) i = 1, . . . , m.

Then, function (11) determines a wavefunction of the hKdV(2m+1) hierarchy on the domain
D of pointstm such that

∂
`m
1 τW (t(tm)) 6= 0.

Solutions of the members of the hierarchy can be derived from the functionsbi and an
arising in expansion (10). For example, ifm = 1, we have

u0 = 2∂xa3− 2a2∂xa1+ a1∂
2
x b1+ 2∂xa1∂xb1

u1 = (∂xb1)
2+ 2∂xa1

u2 = 2∂xb1.

(17)

Our next theorem shows how to determine the explicit form of (10) from theτ -function
of W .

Theorem 3.If W(t0) is in the stratum6m then the functionf̂ (k, t0) is given by

f̂ (k, t0) = ∂
`m−1

1 τW (t0− ε(k))
∂
`m−1

1 Pm(∂)τW (t0)
(18)

wherePm(∂),∂ := (∂1, ∂3, . . .), is obtained from the identity

exp(−ε(k) · ∂) =
∑
n>0

1

kn
Pn(∂).

Proof. The proof of this result is based on the properties of the decomposition ofτ -
functions in terms of Schur functions [1]

τV (t) =
∑
S

wSFS(t). (19)

EachFS is a polynomial in theti , homogeneous of weight̀(S) if we give ti weight i, with
`(S) given by the codimension of the stratum6S . It turns out [1] that the minimal weight
of the terms in (19) is the codimension of the stratum on whichV lies. Hence, by taking
into account that

τW

(
t01− 1

k
+ x, t03− 1

3k3
, t05− 1

5k5
, . . .

)
= τW(t0)

(
x − 1

k
,− 1

3k3
,− 1

5k5
, . . .

)
from the assumptionW(t0) ∈ 6m we deduce that

∂n1τW (t0− ε(k)) = O
(

1

k`m−n

)
. (20)
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Hence, the minimal ordernmin for which ∂nmin
1 τW (t0 − ε(k)), as a function ofk, is not

identically zero and must satisfynmin > `m−1. OtherwiseW(t0) would admit elements
of degreed < m and this would contradict the assumptionW(t0) ∈ 6m. Let us see that
nmin = `m−1. First, we notice thatnmin is of the form`p for somep > 0. This follows from
theorem 1 which implies thatnmin is the minimum of the values̀p corresponding to the
strata6p such thatW(t0 − ε(k)) ∈ 6p for some value ofk. Moreover, as∂`m1 τW (t0) 6= 0
andP2(∂) = ∂2

1/2 it easily follows that∂`m−2
1 τW (t0− ε(k)) 6≡ 0, so thatnmin is of the form

`p with p < m. Thereforenmin = `m−1.
Finally, from (20) we deduce

∂
`m−1

1 τW (t0− ε(k)) = c

km
+O

(
1

km+1

)
with c 6= 0, since otherwiseW(t0) would admit elements of degreed < m. The rest of the
proof immediately follows. �

Expression (18) forf̂ (k, t0) constitues a regularization of the Baker functions of Gr(2)

near theτ -function zeroes. A more general process of desingularizing the Baker functions
of the whole Gr is provided by theorem 7.4 of [5].

4. A class of solutions of hKdV hierarchies

In view of the results of the above section we have that the known classes ofτ -functions for
the standard KdV hierarchy are to our disposal in order to generate solutions to the hKdV
hierarchies. For example, we can take the class which characterizes the rational solutions
(see [1–3, 15, 16]), vanishing asx −→∞. Theseτ -functions can be obtained by means of
coordinate translations from theτ -functionsτm associated with the subspacesWm spanned
by {ks : s ∈ Sm}. Moreover, we can write these latter in the form

τm(t) =

∣∣∣∣∣∣∣∣∣
hm hm+1 . . . h2m−1

hm−2 hm−1 . . . h2m−3

hm−4 hm−3 . . . h2m−5

. . . . . . . . . . . .

h2−m h3−m . . . h1

∣∣∣∣∣∣∣∣∣ m > 1 (21)

wherehi = hi(t) are the Schur polynomials:

exp

(
−
∑
n>0

t2n+1k
2n+1

)
= 1+

∑
i>1

hi(t)k
i .

The first few of which are

τ1 = −t1 τ2 = − 1
3t

3
1 + t3

τ3 = 1
45t

6
1 − 1

3t
3
1 t3+ t1t5− t23 .

(22)

Let us describe some solutions of the hKdV(2m+1) hierarchies form = 1, 2 which derive
from theseτ -functions.

Let us first considerτ2. It can be factorized as

τ2 = − 1
3

2∏
i=0

(t1− εi 3
√
t3) ε := exp

2π

3
i.

Thus, fort3 6= 0 we have three patchest(i)(t1) (i = 0, 1, 2) with associated functions

b
(i)

1 = εi 3
√

3t3.
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Each of them determines a wavefunction of the hKdV(3) hierarchy. For example, fori = 0
we obtain

f = exp

(
k

3
√

3x + k3x +
∑
n>2

t2n+1k
2n+1

)(
1

k
− 1

k2

1
3
√

3x

)
x := t3

and the following solution of the hKdV(3) hierarchy

u0 = 4

9x2
u1 = 3

(3x)4/3
u2 = 2

(3x)2/3
.

The analysis of the solutions of the hKdV hierarchies provided byτ3 is more involved. The
discriminant ofτ3 with respect tot1 is

1(t1) = [(3t3)
5− (5t5)3]2.

Hence, if1(t1) 6= 0 the polynomialτ3(t1, t1), as a function oft1, has simple roots only,
so that we may define six patchest(i)(t1) which lead to solutions of the hKdV(3) hierarchy.
The corresponding functionst1 = b(i)1 (t1) satisfy the constraint

t23 +
t31

3
t3− t61

45
− t1t5 = 0 (23)

which can be explicitly solved for the variablex := t3 as

x = − t
3
1

6
±
√
t61

20
+ t1t5.

Thus, one finds two real continuous branchest1 = b(a)1 (x, t5) (a = 1, 2). Observe that the

branch over the point(x, t1) = ( (5t5)3/53 , (5t5)1/5), has a singularx-derivative at that point.
Notice also thatb(2)(x, t5) = −b(1)(−x,−t5).

Let us consider now the case1(t1) = 0; that is to say,

t3 = 1
3(5t5)

3/5

Figure 1. Implicit branches of equation (23) fort5 =
−2.

Figure 2. Implicit branches of equation (23) fort5 = 2.
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for a certain determination of the cubic root. Under this condition one finds

τ3 = 1
45(t1− (5t5)1/5)3

2∏
i=0

(t1− ai(5t5)1/5)

whereai stand for the three different roots ofa3 + 3a2+ 6a + 5. Thus, we obtain a patch
t(t2) determined by

b1 = (5x)1/5 b2 = 1
3(5x)

3/5 x := t5
which leads to a solution of the hKdV(5) hierarchy. Observe thatτ3(t(t(2)) − ε(k)) ≡ 0,
and that the corresponding wavefunction is

f (k, t(2)) = exp

(
k(5x)1/5+ k3 1

3
(5x)3/5+ k5x + · · ·

)(
1

k2
− (5x)

− 1
5 )

k3

)
.

The τ -functions of the KdV hierarchy of polynomial-type are relevant in the analysis
of the motion of poles for the rational solutions of the KdV equation [16]

∂3u = ∂3
1u− 6u∂1u.

SupposeτW (t1, t1) is one of these functions. From the results of [1] and [16] one may prove
that for most values oft1 there exists a positive integerm such thatτW can be factorized
into `m different simple factors as

τW (t1, t1) =
`m∏
i=1

(t1− pi(t1))

so that the corresponding solution of the KdV hierarchy takes the form

uW(t1, t1) =
`m∑
i=1

2

(t1− pi(t1))2
.

It turns out that after substituting this expression into the KdV equation one finds [16]

∂3pi = 12
∑
j 6=i

1

(pi − pj )2
∑
j 6=i

1

(pi − pj )3 = 0

and this constitutes a constrained flow of the Calogero–Moser hierarchy. Similar equations
are obtained by using the higher members of the KdV hierarchy. On the other hand,
according to the results of the present paper, each of the functionspi(t1) determines a
solution of the hKdV(3) hierarchy associated with the patch

t(i)(t1) = (pi(t1), t1).

Thus, from (3) the corresponding wavefunction is

f̂ (i)(k, t1) = −τW (t
(i)(t1)− ε(k))

∂1τW (t(i)(t1))
.

For these solutions it readily follows that the equations of the hKdV(3) hierarchy reduce
to partial differential equations for thèm functions pi(t1). They describe differential
constraints for thehypersurfacest1 = pi(t1) in C∞ involving several coordinatest2i+1. For
example, it is not hard to see that from the third equation of (16) one finds

∂3

[
∂5pi + (∂3pi)

2+ ∂3

∑
j 6=i

1

pi − pj

]
= 0.



4824 M Mañas et al

In what concerns the higher hKdV hierarchies, they arise when manifolds of multiple
zeros are present in the factorization ofτW , so that they describe differential constraints for
the collisionsof manifolds of simple zeros.

Finally, we notice that the solutions of the hKdV hierarchies determined in this section
involve in general implicit functionsbi(tm). This type of solution also appears in the
theory of the Harry Dym equation [17–19] which in turn is also described in the context
of integrable hierarchies associated with generalized Schrödinger problems. Therefore, it
may be expected that the analysis of this paper can be generalized to the integrable models
characterized in [11].
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